Agentless是一种无需代理的自动解决软件开发问题的方法。它通过定位、修复和补丁验证三个阶段来解决每个问题。Agentless利用分层过程定位故障到特定文件、相关类或函数,以及细粒度的编辑位置。然后,Agentless根据编辑位置采样多个候选补丁,并选择回归测试来运行,生成额外的复现测试以复现原始错误,并使用测试结果重新排名所有剩余补丁,以选择一个提交。Agentless是目前在SWE-bench lite上表现最佳的开源方法,具有82个修复(27.3%的解决率),平均每问题成本0.34美元。
MistoLine是一个SDXL-ControlNet模型,能够适应任何类型的线条艺术输入,展示出高精度和出色的稳定性。它基于用户提供的线条艺术生成高质量图像,适用于手绘草图、不同ControlNet线条预处理器和模型生成的轮廓。MistoLine通过采用新颖的线条预处理算法(Anyline)和基于stabilityai/stable-diffusion-xl-base-1.0的Unet模型的重新训练,以及在大型模型训练工程中的创新,展现出在复杂场景下超越现有ControlNet模型的细节恢复、提示对齐和稳定性的优越性能。
Aquila-VL-2B模型是一个基于LLava-one-vision框架训练的视觉语言模型(VLM),选用Qwen2.5-1.5B-instruct模型作为语言模型(LLM),并使用siglip-so400m-patch14-384作为视觉塔。该模型在自建的Infinity-MM数据集上进行训练,包含约4000万图像-文本对。该数据集结合了从互联网收集的开源数据和使用开源VLM模型生成的合成指令数据。Aquila-VL-2B模型的开源,旨在推动多模态性能的发展,特别是在图像和文本的结合处理方面。
Qwen Turbo 1M Demo是一个基于Hugging Face平台的人工智能模型演示。这个模型代表了自然语言处理技术的最新进展,特别是在中文文本理解和生成方面。它的重要性在于能够提供高效、准确的语言模型,以支持各种语言相关的应用,如机器翻译、文本摘要、问答系统等。Qwen Turbo 1M Demo以其较小的模型尺寸和快速的处理速度而受到青睐,适合需要快速部署和高效运行的场合。目前,该模型是免费试用的,具体价格和定位可能需要进一步的商业洽谈。
Orpheus TTS 是一个基于 Llama-3b 模型的开源文本转语音系统,旨在提供更加自然的人类语音合成。它具备较强的语音克隆能力和情感表达能力,适合各种实时应用场景。该产品是免费的,旨在为开发者和研究者提供便捷的语音合成工具。
鲟曦研习社,是一个可信赖的AI综合社区,以让每个人高效获得可信赖的解答为使命。鲟曦研习社凭借认真、专业和友善的社区氛围,结构化、易获得的优质内容,基于问答的内容生产方式和独特的社区机制,吸引、聚集了各行各业中大量的亲历者、内行人、领域专家、领域爱好者,将高质量的内容透过人的节点来成规模地生产和分享。用户通过讨论、辩论以及问答等交流方式建立信任和连接,打造和提升个人影响力,并发现、获得新机会。
Neural Magic是一家专注于AI模型优化和部署的公司,提供领先的企业级推理解决方案,以最大化性能和提高硬件效率。公司的产品支持在GPU和CPU基础设施上运行领先的开源大型语言模型(LLMs),帮助企业在云、私有数据中心或边缘环境中安全、高效地部署AI模型。Neural Magic的产品背景信息强调了其在机器学习模型优化方面的专业知识,以及与科研机构合作开发的创新LLM压缩技术,如GPTQ和SparseGPT。产品价格和定位方面,Neural Magic提供了免费试用和付费服务,旨在帮助企业降低成本、提高效率,并保持数据隐私和安全。
OLMo-2-1124-13B-DPO是经过监督微调和DPO训练的13B参数大型语言模型,主要针对英文,旨在提供在聊天、数学、GSM8K和IFEval等多种任务上的卓越性能。该模型是OLMo系列的一部分,旨在推动语言模型的科学研究。模型训练基于Dolma数据集,并公开代码、检查点、日志和训练细节。
Exactly.ai是一种先进的艺术创作平台,利用机器学习技术理解艺术家的风格,然后根据简单描述生成新的图片。它能够帮助艺术家在几秒钟内创作个性化的图片,提高创作效率。Exactly.ai的功能包括:根据艺术家的风格生成图片、提高图片质量、增强图片分辨率和细节、基于草图生成图片等。它适用于艺术家、插画家和与领先品牌合作的设计师等用户。定价详情请参考官方网站。
Mo是一个专注于 AI 技术学习和应用的平台,旨在为用户提供从基础到高级的系统学习资源,帮助各类学习者掌握 AI 技能,并将其应用于实际项目中。无论你是大学生、职场新人,还是想提升自己技能的行业专家,Mo都能为你提供量身定制的课程、实战项目和工具,带你深入理解和应用人工智能。
Open-Sora-Plan是一个开源项目,旨在复现OpenAI的Sora(T2V模型),并构建关于Video-VQVAE(VideoGPT)+ DiT的知识。项目由北京大学-兔展AIGC联合实验室发起,目前资源有限,希望开源社区能够贡献力量。项目提供了训练代码,并欢迎Pull Request。
《深度学习》是一本由Simon J.D. Prince所著的深度学习领域的经典教材,MIT Press于2023年12月5日出版。本书涵盖了深度学习领域的许多关键概念,适合初学者和有经验的开发者阅读。本仓库提供了该书的中文翻译,翻译基于原书的最新版本,使用ChatGPT进行机翻并进行人工审核,确保翻译的准确性。
Data Science Agent in Colab 是 Google 推出的一款基于 Gemini 的智能工具,旨在简化数据科学工作流程。它通过自然语言描述自动生成完整的 Colab 笔记本代码,涵盖数据导入、分析和可视化等任务。该工具的主要优点是节省时间、提高效率,并且生成的代码可修改和共享。它面向数据科学家、研究人员和开发者,尤其是那些希望快速从数据中获取洞察的用户。目前该工具免费提供给符合条件的用户。
WeST是一个开源的语音识别转录模型,以300行代码的简洁形式,基于大型语言模型(LLM)实现语音到文本的转换。它由一个大型语言模型、一个语音编码器和一个投影器组成,其中仅投影器部分可训练。WeST的开发灵感来源于SLAM-ASR和LLaMA 3.1,旨在通过简化的代码实现高效的语音识别功能。
GR-2是一个先进的通用机器人代理,专为多样化和可泛化的机器人操作而设计。它首先在大量互联网视频上进行预训练,以捕捉世界的动态。这种大规模预训练涉及3800万视频剪辑和超过500亿个标记,使GR-2能够在随后的策略学习中跨广泛范围的机器人任务和环境进行泛化。随后,GR-2针对视频生成和动作预测进行了微调,使用机器人轨迹。它展示了令人印象深刻的多任务学习能力,在100多个任务中平均成功率达到97.7%。此外,GR-2在新的、以前未见过的场景中表现出色,包括新的背景、环境、对象和任务。值得注意的是,GR-2随着模型大小的增加而高效扩展,突显了其持续增长和应用的潜力。
Pusa 通过帧级噪声控制引入视频扩散建模的创新方法,能够实现高质量的视频生成,适用于多种视频生成任务(文本到视频、图像到视频等)。该模型以其卓越的运动保真度和高效的训练过程,提供了一个开源的解决方案,方便用户进行视频生成任务。